Odour-evoked [Ca2+] transients in mitral cell dendrites of frog olfactory glomeruli.
نویسندگان
چکیده
We measured Ca2+ concentration, [Ca2+], transients in mitral cell distal apical dendritic tufts produced by physiological odour stimulation of the olfactory epithelium and electrical stimulation of the olfactory nerve (ON) using two-photon scanning and conventional wide-field microscopy of Ca2+-Green-1 dextran in an in vitro frog nose-brain preparation. Weak or strong ON shock-evoked fluorescence transients always had short latency with an onset 0-10 ms after the onset of the bulb local field potential, rapidly increasing to a peak of up to 25% fractional fluorescence change (DeltaF/F) in 10-30 ms, were blocked by 10 microM CNQX, decaying with a time constant of about 1 s. With stronger ON shocks that activated many receptor axons, an additional, delayed, sustained AP5-sensitive component (peak at approximately 0.5 s, up to 40% DeltaF/F maximum) could usually be produced. Odour-evoked [Ca2+] transients sometimes displayed a rapid onset phase that peaked within 50 ms but always had a sustained phase that peaked 0.5-1.5 s after onset, regardless of the strength of the odour or the amplitude of the response. These were considerably larger (up to 150% DeltaF/F) than those evoked by ON shock. Odour-evoked [Ca2+] transients were also distinguished from ON shock-evoked transients by tufts in different glomeruli responding with different delays (time to onset differed by up to 1.5 s between different tufts for the same odour). Odour-evoked [Ca2+] transients were increased by AMPA-kainate receptor blockade, but substantially blocked by AP5. Electrical stimulation of the lateral olfactory tract (5-6 stimuli at 10 Hz) that evoked granule cell feedback inhibition, blocked 60-100% of the odour-evoked [Ca2+] transient in tufts when delivered within about 0.5 s of the odour. LOT-mediated inhibition was blocked by 10 microM bicuculline.
منابع مشابه
Action potential backpropagation and multiglomerular signaling in the rat vomeronasal system.
In the accessory olfactory bulb (AOB), sensory neurons expressing a given vomeronasal receptor (VR) gene send divergent projections to many glomeruli, and second-order neurons (mitral cells) link to multiple glomeruli via branched primary dendrites. We used calcium imaging and paired somadendritic patch-clamp recording to track backpropagated action potentials (APs) in rat AOB primary dendrites...
متن کاملOlfactory nerve stimulation-induced calcium signaling in the mitral cell distal dendritic tuft.
Olfactory receptor neuron axons form the olfactory nerve (ON) and project to the glomerular layer of the olfactory bulb, where they form excitatory synapses with terminal arborizations of the mitral cell (MC) tufted primary dendrite. Clusters of MC dendritic tufts define olfactory glomeruli, where they involve in complex synaptic interactions. The computational function of these cellular intera...
متن کاملDopamine inhibits mitral/tufted--> granule cell synapses in the frog olfactory bulb.
Synaptic interactions between the dendrites of mitral/tufted (MT) and granule cells (GCs) in the olfactory bulb are important for the determination of spatiotemporal firing patterns of MTs, which form an odor representation passed to higher brain centers. These synapses are subject to modulation from several sources originating both within and outside the bulb. We show that dopamine, presumably...
متن کاملDetecting activity in olfactory bulb glomeruli with astrocyte recording.
In the olfactory bulb, axons of olfactory sensory neurons (OSNs) expressing the same olfactory receptor converge on specific glomeruli. These afferents form axodendritic synapses with mitral/tufted and periglomerular cell dendrites, whereas the dendrites of mitral/tufted cells and periglomerular interneurons form dendrodendritic synapses. The two types of intraglomerular synapses appear to be s...
متن کاملDendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike.
In the mammalian olfactory bulb, axonless granule cells process synaptic input and output reciprocally within large spines. The nature of the calcium signals that underlie the presynaptic and postsynaptic function of these spines is mostly unknown. Using two-photon imaging in acute rat brain slices and glomerular stimulation of mitral/tufted cells, we observed two forms of action potential-inde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 13 9 شماره
صفحات -
تاریخ انتشار 2001